Alendronate mechanism of action: geranylgeraniol, an intermediate in the mevalonate pathway, prevents inhibition of osteoclast formation, bone resorption, and kinase activation in vitro.

نویسندگان

  • J E Fisher
  • M J Rogers
  • J M Halasy
  • S P Luckman
  • D E Hughes
  • P J Masarachia
  • G Wesolowski
  • R G Russell
  • G A Rodan
  • A A Reszka
چکیده

Nitrogen-containing bisphosphonates were shown to cause macrophage apoptosis by inhibiting enzymes in the biosynthetic pathway leading from mevalonate to cholesterol. This study suggests that, in osteoclasts, geranylgeranyl diphosphate, the substrate for prenylation of most GTP binding proteins, is likely to be the crucial intermediate affected by these bisphosphonates. We report that murine osteoclast formation in culture is inhibited by both lovastatin, an inhibitor of hydroxymethylglutaryl CoA reductase, and alendronate. Lovastatin effects are blocked fully by mevalonate and less effectively by geranylgeraniol whereas alendronate effects are blocked partially by mevalonate and more effectively by geranylgeraniol. Alendronate inhibition of bone resorption in mouse calvaria also is blocked by mevalonate whereas clodronate inhibition is not. Furthermore, rabbit osteoclast formation and activity also are inhibited by lovastatin and alendronate. The lovastatin effects are prevented by mevalonate or geranylgeraniol, and alendronate effects are prevented by geranylgeraniol. Farnesol and squalene are without effect. Signaling studies show that lovastatin and alendronate activate in purified osteoclasts a 34-kDa kinase. Lovastatin-mediated activation is blocked by mevalonate and geranylgeraniol whereas alendronate activation is blocked by geranylgeraniol. Together, these findings support the hypothesis that alendronate, acting directly on osteoclasts, inhibits a rate-limiting step in the cholesterol biosynthesis pathway, essential for osteoclast function. This inhibition is prevented by exogenous geranylgeraniol, probably required for prenylation of GTP binding proteins that control cytoskeletal reorganization, vesicular fusion, and apoptosis, processes involved in osteoclast activation and survival.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Alendronate inhibits invasion of PC-3 prostate cancer cells by affecting the mevalonate pathway.

Breast and prostate cancer preferentially metastasize in the skeleton, inducing locally increased bone resorption by osteoclasts. Bisphosphonates (BPs), potent inhibitors of osteoclasts and bone resorption, are able to reduce metastatic bone lesions, but the metastasis-related cellular target molecules for BPs have not yet been identified. In osteoclasts, nitrogen-containing BPs inhibit the fun...

متن کامل

Alendronate Inhibits VEGF Expression in Growth Plate Chondrocytes by Acting on the Mevalonate Pathway

Bisphosphonates decrease chondrocyte turnover at the growth plate and impact bone growth. Likewise vascular endothelial growth factor (VEGF) plays an important role in endochondral bone elongation by influencing chondrocyte turnover at the growth plate. To investigate whether the action of bisphosphonate on the growth plate works through VEGF, VEGF protein expression and isoform transcription i...

متن کامل

Alendronate, a double-edged sword acting in the mevalonate pathway

Aminobisphosphonate aledronate is a compound commonly used clinically for the treatment of osteoporosis and other bone diseases, as a result of it preventing bone resorption. However, in previous years it has also been used to obtain cellular and animal models of a rare genetic disorder termed Mevalonate Kinase Deficiency (MKD). MKD is caused by mutations affecting the mevalonate kinase enzyme,...

متن کامل

Synergistic activity of the histone deacetylase inhibitor suberoylanilide hydroxamic acid and the bisphosphonate zoledronic acid against prostate cancer cells in vitro.

Bisphosphonates are widely used agents for the treatment of malignant bone disease. They inhibit osteoclast-mediated bone resorption and can have direct effects on cancer cells. In this study, we investigated whether the anticancer activity of the third-generation bisphosphonate zoledronic acid (ZOL) could be enhanced by combination with the histone deacetylase inhibitor suberoylanilide hydroxa...

متن کامل

Farnesol and geranylgeraniol prevent activation of caspases by aminobisphosphonates: biochemical evidence for two distinct pharmacological classes of bisphosphonate drugs.

Recently, advances have been made in understanding the molecular mechanisms by which bisphosphonate drugs inhibit bone resorption. Studies with the macrophage-like cell line J774 have suggested that alendronate, an amino-containing bisphosphonate, causes apoptosis by preventing post-translational modification of GTP-binding proteins with isoprenoid lipids. However, clodronate, a nonaminobisphos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 96 1  شماره 

صفحات  -

تاریخ انتشار 1999